STAT 2593

Lecture 013 - The Binomial Distribution

Dylan Spicker

The Binomial Distribution

Learning Objectives

1. Understand the binomial distribution, its use cases, and its properties.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.
- We assume that there is a fixed number of trials, n.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.
- We assume that there is a fixed number of trials, n.
- We assume that there is a constant probability of success, p.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.
- We assume that there is a fixed number of trials, n.
- We assume that there is a constant probability of success, p.
- We assume that each trial is independent of each other.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.
- We assume that there is a fixed number of trials, n.
- We assume that there is a constant probability of success, p.
- We assume that each trial is independent of each other.
- The random variable X of the counts of successes then follows $X \sim \operatorname{Bin}(n, p)$.

The Binomial Distribution

- If you have repeated Bernoulli trials, and you count your successes, the corresponding random variable follows a binomial distribution.
- We assume that there is a fixed number of trials, n.
- We assume that there is a constant probability of success, p.
- We assume that each trial is independent of each other.
- The random variable X of the counts of successes then follows $X \sim \operatorname{Bin}(n, p)$.
- We have $E[X]=n p, \operatorname{var}(X)=n p(1-p)$, and

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Important Notes

- Binomial probabilities correspond to sampling with replacement.

Important Notes

- Binomial probabilities correspond to sampling with replacement.
- If you are sampling without replacement this is no longer a binomial distribution.

Important Notes

- Binomial probabilities correspond to sampling with replacement.
- If you are sampling without replacement this is no longer a binomial distribution.
- If the population is very large, then it will behave as an approximately binomial distribution.

Summary

- The binomial distribution characterizes the number of successes on repeated bernoulli trials.
- The binomial distribution relies on the assumptions of fixed number of trials, constant probability of success, and independence.
- There is a closed for PMF, expectation, and variance.

